AD=A103 635 COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE F/6 972
FSCAN=-81 REPORT AND USER'S MANUAL.(U)
JUN 81 6 M CLEMM . uuezo—n-e-oone
UNCLASSIF1ED cu—cs-zoz-ax ARO=15074. 13=M

l EN
...... . ‘ ” ““t

-

e —
‘ ARO /5074 /3-1M\

LEVEL” @

UNIVERSITY OF COLORADO

JTG FLE COBY

DEPARTMENT OF COMPUTER SCIENCE

Technical Report

DISTRIBUTION STATEMENT A

Approved for public release;
Distribu

ELECTERR |
SEP 2 waaD
tion Unlimited A

81 9 01.17%8

Justificat iton

By.
_pistr_ibution/
b_;}‘{qilability Co-dt;s—:
:Avail and/or
Dist | Special

I

————

—
—]

LAcces“A . For
NTIS GRA&I M’){"
DTIC TaB M
Unannounced 3

FSCAN-81 Report and User's Manual

by

Geoffrey M. Clemm
Department of Computer Science

University of Colorado at Boulder

Boulder,

CU~Cs-202-81

Colorado 80309

June 1981

INTERIM TECHNICAL REPORT
U. S. ARMY RESEARCH OFFICE

CONTRACT NO.

DAAG29-78~G-0046

Approved for public release;
Distribution Unlimited

@, sep 2 198!

/ ,
LEVEL

DTIC

ELECTE

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS ON OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS

OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION.

WE ACKNOWLEDGE U. S. ARMY RESEARCH SUPPORT
UNDER CONTRACT NO. DAAG29-78-G-0046 AND
NATIONAL SCIENCE FOUNDATION SUPPORT UNDER
GRANT NO. MCS77-02194.

e eT——

mLume . “LASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING PORM
RT NUMBER 2. SOVT ACCESSION NO,| 3. ﬁlClPl!NJS CATALOG NUMBER
CU-CS-202-817 -0 143 139 |
TITLE (and Subtitle) /F‘* WWVW“ - ,
G;j FSCAN-81 Report and User's Manualr X)Z /(’/:?y P /, [
B T oo |
J—-Mléann;? M = - .18 CONTRACY CR GRANT NUMBER(s)
= df e‘?..._.ffﬁ'_.M /S | ~omas29-78-6-0046 /
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gil‘.A.U‘OEﬂl;(!“ﬁINTT'Npunu%,Ecﬂcg' TASK

‘ Department of Computer Science N)
4 University of Colorado at Boulder / // ‘ f/) P g{;l(
! Boulder, Colorado 80309 —t —
i 11. CONTROLLING OF FICE NAME AND ADDRESS] T T }1T REPORT DATE VSRDY;

U. S. Army Research Office A(//</* ,1}4§; !

Post Office Box 12211 T3 NUMBER OF PAGES—— [';

Research Triangle Park, NC 27709 ‘

T3, MONITORING AGENCY NAME & ADORESS({! different from Controiling Office) | 5. SECURITY CLASS. (of fhis repors)
jﬁ;} ' _ unclassified
Ly
AR 18s, DECL ASSIFICATION/ DOWNGRADING
CHEDULE N

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public releasesdistribution-unlimited.

7 o .//“7%- Vs

! o —
17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If different from Report)

NA

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official

Department of the Army position, unless so designated by other
authorized documents.

19. KEY WORDS (Continue on reverse aide i necessary and identify by block number)

FSCAN, lexical qna]ysis, scanning, compiler, interpreter, token,
regu!ar expression, backtracking, deterministic, nonterminal,
terminal, goal symbol, screening

\

Li&k!ﬂ’ﬁhc‘\' (Continue on reveras side I necessary and identify by block number)

FSCAN is a language for specifying the lexical analysis of programs written in
any current programming language, including FORTRAN. This report describes the
FSCAN language, a compiler for the language, and an interpreter for the resultin
object code. The interpreted object code forms an efficient lexical analyzer
that takes as input a stream of characters and produces as output a stream of
tokens (lexical units). The compiler and interpreter are designed for portabili
Both are written in ANSI FORTRAN (1966) supplemented by a small number of short
machine dependent subroutines.

TR~

DD ,"5n"; 1473 EoiTion OF 1 NOV 6B 1S ORsOLETE unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entergtl)

’/’/;J /’./ 0% ‘/ﬁé

ey

CONTENTS

INTRODUCTION . occovosecoccaossccocscccsccsscsesccnecsosas 1
THE LANGUAGE;........... 2
ProCce@AUreS .cccecsesssosvnessscssscsansssssscscssacncas 3
RULES .ot eerecnosssnescsacccasososacsooosnsoosnossnss 4

FSCAN Regular EXpressions ...cceseseccccssssessnnss 6

1t SRR T ¥ WAoo el b TR v g

TOken-ACtiOnS ® 6 0 8 2 0 08 L 00 00 0 0 S L0 LE s LEEOE LIRS COEEOEIESEETS 10

THECOMPILER ® 9 8 9 0 9 0 P O 9 S G S O & & SV GG SN O NNsrNErre S 12

THE OBJECT CODE INTERPRETER :¢tccocccssccsocsccncasoansnas 15

FSCAN-SUBSET OBJECT CODE INTERPRETER .ccescccccccsosnns 20

Appendix A : Compiler machine dependenciescecccees 23

Appendix B : Interpreter machine dependencies 25
E Appendix C : Syntax of FSCAN Programs «..ceseeeesscescs 26
‘ Appendix D : Examples of FSCAN Programs ..sccssecessssvs 27

FSCAN @ © 5 ¢ ¢ 6 8 060 0 0 00 0B P OB E LN NS0 E 0SSO0 LN EEOLEEEETOLTS 28

] PASCAL ® 0 9 9 0 2 0 8 0 0 8 0 0P P O N SN OB GO OSSO O P 0 PO N O E S S OB OO NS 29

FORTRAN-77 ® @ 0 6 0008 0609 0000008000000 00 0ttt LITONEES 32

' Appendix E : Interpreter Size and Speedc.c000000 40

Abstract

FSCAN is a language for specifying the lexical analysis
of programs written in any current programming language,
including FORTRAN. This report describes the FSCAN
language, a compiler for the language, and an interpreter
for the resulting object code. The interpreted object code
forms an efficient lexical analyzer that takes as input a
stream of characters and produces as output a stream of
tokens (lexical units). The compiler and interpreter are
designed for portability. Both are written in ANSI FORTRAN
(1966) supplemented by a small number of short machine
dependent subroutines.

1. INTRODUCTION

The first phase of the analysis of a c¢omputer program
is "lexical analysis" or "scanning", where the source text
is broken up into the words or "tokens" of the programming
language. For most languages this 1is a relatively
straightforward task, as spaces or some other delimiter are
required at any token separation points that could be
ambiguous. Unfortunately the ANSI FORTRAN standards [1,2]
specify that spaces for the most part are meaningless in
FORTRAN programs. This creates several ambiguous situations
that cannot without backtracking be resolved by a left-to-
right scan with single character look-ahead of the source
text. For example, if the string "DO" has been read, it is
unclear whether the scan has reached the end of the keyword,
"DO", in a statement such as

D0O10I =1, 3

or whether the scan 1is in the middle of a variable name in a
statement such as

DO10I =1 + X

The problem of the lexical analysis of FORTRAN is
further complicated by the existence of numerous dialects
and extensions of FORTRAN that vary according to the
installation and particular compiler in use. The problem is
therefore most acute for a system such as the DAVE software
validation system [3] where it is desirable that all
variants of FORTRAN be readable. Ordinarily this would
entail recoding the 1lexical analyzer module for each new
FORTRAN variant, in addition to maintaining a 1library of
already coded lexical analyzer modules.

To minimize these tasks, the FSCAN Lexical Analyzer
Generating System was developed. The FSCAN system consists
of a language, a compiler for the language, and an
interpreter for the object code produced by the FSCAN
compiler. The FSCAN language and the LR style processing
were initially specified by DeRemer [4].

2. THE LANGUAGE

The FSCAN language (henceforth referred to simply as
"FSCAN") was designed to allow the specification of a
complex lexical analyzer, such as that required by FORTRAN,
in as concise and understandable a manner as possible.

An FSCAN program consists of the keyword, TOKENS,
followed by a list of the tokens to be generated, followed
by a single FSCAN procedure (within which may be defined
additional procedures) terminated by a period. An FSCAN
procedure specifies in an extended BNF-style notation a
grammar that describes a left~to-right pass over the source
text. During this pass each character is examined and
depending on the character and the current state of the
lexical analyzer, one of the following actions is taken:

1. mark the character as kept or deleted and move ahead to
the next character

2. call an FSCAN procedure
3. exit an FSCAN procedure

4. exit an FSCAN procedure and backup to the state and
location in the source text at which the procedure was
called

5. perform a specific token-action

The compiler verifies that an FSCAN program specifies a
deterministic 1lexical analyzer, i.e., that for any state of
the analyzer, the next action to be performed can be
uniquely determined from the character currently being
examined.

2.1. Procedures

Syntax

An FSCAN procedure or "scanner" consists of a sequence
of grammatical rules delimited by the keywords, 'SCANNER'
and 'END'. Following each of these keywords is the goal
symbol for the sequence of rules; this also serves as the
name of the procedure. The redundant repetition of the goal
symbol 1is used by the FSCAN compiler to ensure that the
'SCANNER' - 'END' pairs are matched in the way the
programmer intended. Each rule in the sequence is
terminated by a semicolon.

Example

SCANNER DIG:

rule~l; rule 2; ... rule n;
END DIG
Semantics

One of the rules must be a definition for the goal
symbol of the procedure. This rule specifies the finite-
state stack-automaton scan of the source text which is
performed when the procedure is called. The scan is
performed in a 1longest match manner; namely, given the
choice between finishing and scanning more of the source
text, the procedure will always continue scanning.

2.2. Rules

An FSCAN rule is either a macro rule or a procedure

rule. The scope of rule definitions corresponds to that of
ALGOL.
2.2.1. Macro Rules

As in a BNF rule, the left side of a macro rule is a
nonterminal while the right side 1is a sequence of
alternatives. Each alternative may have an associated

token-action, and an alternative, rather than being only a
sequence of terminals and nonterminals, may contain any of a
variety of operators, in the style of regular expressions,
as well as parentheses for grouping.

Syntax
Each alternative is preceded by a single-right-arrow
{ ->). The optional token-action is placed at the end of

the corresponding alternative and is preceded by a double-
right-arrow (=>).

Examgle

TEXT -> fscan_reg_exprn_1l => action_1
-> fscan_reg_exprn_2
-> fscan_reg_exprn_3 => action_ 2

Semantics

A macro rule is a standard macro in that the right part
of the rule textually replaces any occurrence of the left
part, when the occurrence is in an FSCAN regular expression
within the scope of the macro rule definition. A macro rule
cannot be recursively defined except through a procedure

rule call. Thus in the above example, the nonterminal,
TEXT, could not appear in any of the three FSCAN regular
expressions in the right part, but the following

construction would be legal:
TEXT1 -> fscan_reg_exprn_containing TEXT2;

SCANNER TEXT2:
TEXT2 -> fscan_reg_exprn_containing TEXT1;
END TEXT2; -

This is legal since execution time recursion is implemented,
whereas recursively defined macros without intervening
procedure rule calls would imply infinite textual expansion
of the macro.

During execution of the interpreter, after an
alternative has been successfully matched with the source
text, the corresponding token-~action, if any, is performed.

2.2.2. Procedure Rule

Syntax

A procedure rule is simply an FSCAN procedure.
Semantics

During execution of the interpreter, when a nonterminal

associated with a procedure rule is to be matched with the
source text, the appropriate procedure is called.

2.3. FSCAN Regular Expressions (abbreviation: FRE)

2.3.1. Atomic units

The atomic units of an FRE are terminals, integers, and
nonterminals.

2.3.1.1. Terminals

Syntax
A terminal is either a '"kept~string" or a "deleted-
string.”" A kept-string is a sequence of characters enclosed
in double quotes (") while a deleted-string is a sequence of
characters enclosed in single quotes ('). If a sharp (#)

appears 1in the string, the sharp 1is ignored and the
immediately following character 1is treated as the next
character of the string, even 1if that character is a

double-guote, or a sharp. For terminals the strings are
restricted to be of length zero, length one, or the string
of 1length three, EOL. A 1length zero string matches no

character, a length one string matches the character of that
string, and EOL represents the end-of-line character.

Examples

o i [} 'A' "7" I##! Ii#" 1" IIEOLII IEOLI

Semantics

The character of the terminal is compared with the next
character of the source text. If they match, the source
text character is marked as "kept" or "deleted", depending
on whether the terminal is a Xkept-string or a deleted-
string, and then the next character in the source text is
examined.

2.3.1.2. Nonterminals

Syntax

A nonterminal is a sequence of letters and digits, the
first of which is a letter.

Examples

A TEMP TEMP1 B3B

|
|

——

Semantics

Nonterminals can name macro rules or procedure rules.
As mentioned earlier, macro rule names are textually
replaced by the right part of the macro defining rule, for
which the semantics have been described. When the
nonterminal names a procedure, it indicates that the
appropriate procedure is to be called during execution.

2.3.1.3. Integers
Syntax
An integer is a string of digits.
Examples
54 0 05 1234567890

Semantics

Integers have their usual meaning.

1o

.3.2. Operations

The operations used to compose FSCAN regular
expressions are divided into two types: Dbasic operations
and extended operations. Let A, B, C be FRE's, let a, b, ¢
be characters, and let n be a non-negative integer.

2.3.2.1. Basic Operations

Syntax
Alternation : A/ B /J ¢ [/ ...
Concatenation : A B C . ..
Repetition : A¥*
Negation : NOT A

Example

NOT (u'u/n;u/u?n) |x|*

Semantics

An alternation successfully matches the source text if
any of 1its alternates do. A concatenation matches the

source text if its operands sequentially match the source
text. A repetition matches an arbitrary number (possibly
zero) of its operand with the source text. The operand of a
negation is restricted to regular expressions that specify a
set of characters, all of which are kept-strings or all of
which are deleted-strings. A negation then matches any
character that is not in its operand's character set. If
matched, a source character is marked as "kept" or "deleted"
if the operand character set consists of kept-strings or
deleted-strings, respectively.

2.3.2.2. Extended QOperations
Syntax
<> : <abc...> = ('a' 'd' '¢' ...)
<<>> : <<abc...>> = ("a" "b" "e" ...)
+ : A+ = A A*
? : A? =A/ ()
LIST : A LIST B = A (B A)*
ELSE : A ELSE B ELSE ... =aAn / B [/ ...
*%x . Ak¥p EA A ... A (n times)
?2* : A?*n £ A2 A? .. A? (n times)

Restrictions: The operands of ELSE and the first operands
of ** and ?* are restricted to being the names of
procedures.

Semantics

The semantics of the extended operations are largely
determined by those of the basic operations by which they
are defined. The operators, ELSE, **, and ?*, are only
approximately equivalent to their respective syntactic
expansions, because they possess the following additional
properties:

ELSE

The ELSE construct provides a backtrack feature where
if the first operand fails to successfully match a segment
of the source text, the second operand is tried on the same
segment, etc. Once the final operand is invoked, match
failure will cause standard error recovery, rather than the
backtrack feature.

**

The only distinction between ** and its syntactic
expansion occurs when the exponent, n, is zero. 1In this
case A**0 matches the input stream only if A would match the
next character in the input stream. Since the exponent is
0, no characters are actually matched by A, only the check
is performed. This can be used to cause the success or
failure of a particular branch of the ELSE operator.

?*

The ?* operator provides limited backup, in the sense
that, if less than n A's have been successfully matched, the
scan is backed up to the state at which the last A (possibly
no A's) has been successfully matched.

2.4. Token-Actions

Syntax
A token-action is a kept or deleted string followed by
a nonterminal in parentheses. Either the string or the

nonterminal in parentheses may be omitted.

Examgles
"NAME" (KEYWORD) "STRING" (OPERATOR) 'BEGIN'

Semantics

A token-action generates a sequence of characters
consisting of all characters marked as kept since the last
token-action. The presence of a nonterminal in parentheses
indicates that this sequence of characters 1is to be
"screened" or rescanned by the procedure rule named by the
nonterminal. if the screening procedure completely
processes the characters without encountering any erroneous
or "unmatchable" characters, all actions generated during
the screening (including token-actions) are performed;
otherwise, all such actions are ignored and a token is
output. The string of the token-action names the type of
the token to be output. All such strings used by an FSCAN
proggam must be listed following the keyword, TOKENS, at the
beginning of the FSCAN program. During runtime, the
generation of the n'th token in this list is indicated by
the output of the integer n+l (the integer, 1, indicates
end-of-file).

If the string is omitted, the screening is
unconditionally performed with standard error recovery at
erroneous characters. If the nonterminal in parentheses 1is
omitted the token 1s wunconditionally output, without any
preceding attempt to screen.

2.4.1. End-of-File Token-Action

Since it was not considered useful to allow a lexical
analyzer to quit before reaching the end-of-file of the
source text, or to allow it to continue operating beyond the
end-of-file, the writer of an FSCAN program is not allowed
to reference the end-of-file. 1Instead, the procedure that
is the FSCAN program, i.e.,

TOKENS ...

SCANNER LEXANLYZ :
LEXANLYZ -> e
END LEXANLYZ.

- 11 -

is conceptually embedded in the following context:

TOKENS EOFTOK ...

SCANNER DEFAULT :
DEFAULT -> LEXANLYZ* EOF ;
EOF -> 'end-of-file' => 'EOFTOK' :
SCANNER LEXANLYZ : ... END LEXANLYZ :
END DEFAULT.

where 'end-of-file' matches the logical end-of-file of the
source text. EOFTOK is therefore predefined in all FSCAN
programs to be the token-action for end-of-file in the
source text and is indicated during runtime by the output of
the integer, 1.

2.4.2. Evaluation Token-Action

The FORTRAN Hollerith constant requires special
treatment by the 1lexical analyzer. In particular, the
lexical analyzer must be driven by a numeric value contained
in the source text. To provide this function, a special
"evaluate" token-action is included in FSCAN.

antax

The normal screening nonterminal is replaced by an
equals sign.

Examgles
(=) "COUNT" (=)
Semantics

The sequence of characters generated by the token
action are evaluated as a positive decimal integer. The
compiler ensures that only digits can be marked as kept in
an alternative possessing an evaluate token-action. The
value resulting from this evaluation can then be referenced
by the FSCAN program by using the name of the rule
containing the evaluate token~action as an exponent in the
** or *? operators. The value of such a "variable" exponent
is always the result of the most recent evaluate token-
action performed by the rule named by the variable.

- 12 -

3. THE COMPILER

The FSCAN compiler consists of 6000 lines of standard
ANSI FORTRAN code. 1In addition, there is a group of short
{1 to 5 lines) routines that are machine dependent. (see
Appendix A).

The compiler takes one input file containing an FSCAN
program and produces three output files - a listing file
annotated with the number of the first token on each line, a
tables file containing the generated object code, and an
errors file describing any errors in the input. The files
are associated with the FORTRAN logical unit numbers five,
six, seven, and zero respectively.

The compiler contains eight processing modules that

perform the following tasks:

3.1. Lexical Analysis, Syntactic Analysis, and Tree
Construction

The input 1is read and all syntactic errors are
reported. If the 1input is syntactically correct, a parse
tree corresponding to the input grammar is built, otherwise
processing stops after the entire input has been scanned for
syntactic correctness.

3.2. Symbol Identification

Each applied occurrence of a symbol (i.e., in the right
sides of rules) is associated with its defining occurrence
(i.e., the rule in which that symbol was defined). In
addition the following errors are detected and reported:

(1) A scanner's beginning goal symbol is different from its
ending goal symbol (probably due to improper scanner
nesting that could not be detected by the parser).

(2) A nonterminal is defined by two different rules within
the same scanner.

(3) No rule defines the goal symbol of a scanner.

(4) A variable exponent is defined in something other than
a rule with an evaluate token-action.

(5) A symbol is used that has not been defined by any rule.

(6) A symbol that is an alternative of an ELSE, a screening
action, or the base of ** or *?, is defined in

- 13 -

something other than a procedure rule.
If any of the above errors occur, processing is halted

following the completion of the symbol identification phase.

3.3. Character Set Creation

The terminals are converted to a set containing the
appropriate character and, where feasible, set operations

corresponding to FSCAN operators are performed (i.e., ‘'/'
and 'NOT') and the operator node 1is replaced by the
resulting set. In addition, by propagating attribute

vectors down and then back up the tree, the following errors
are detected and reported:

(1) A macro rule is recursively defined.

(2) A variable exponent is used before the variable could
have received a value.

(3) A 'NOT' operator is applied to something other than a
character set.

(4) A terminal string other than EOL consists of more than
one character.

(5) A rule containing a kept character is used in a context
where the kept character is associated with no token.

(6) A rule generating a token is used in a context where
another token is currently being built.

{7) A rule containing untokenized kept characters and a
rule producing tokens appear in the same context
(either error 5 or error 6).

(8) VNon-digit characters are kept in a context where an
evaluate token-action could occur.

(9) A token type is used without being declared in the
TOKENS section.

(10) A token type 1s multiply declared in the TOKENS
section.

(11) A token type is declared to be deleted(kept), but used
as kept(deleted).

If any of the above errors occur, processing is halted
following the completion of the character set creation
phase.

- 14 -

3.4. Tree Threading

The tree is converted to a directed acyclic graph by
the addition of directed edges. This additional linkage
allows the LR processing to be performed efficiently.

3.5. Code Generation

The code for a lexical analyzer that will perform the
analysis specified by the user's grammar is generated. This
code is written out to a scratch file as it is produced.

3.6. Code Verification

The parse tree is purged and the code from the scratch
file is read into memory. It is then verified that the code
specifies a deterministic machine that will halt on finite
input. If the grammar specified nondeterministic or non-
halting behavior, this 1is reported as an error, and
processing will halt following completion of the code
verification phase. A nondeterminism error or ‘"action
conflict" is reported by listing the group of actions that,
according to the grammar, would have to be performed
concurrently or nondeterministically. A non-halting error
is reported by indicating the action that, for certain
input, would be repetitively executed infinitely.

3.7. Code Assembly and Optimization

Address locations are compiled and assembled into the
code. Also the code is compacted by collapsing equivalent
character sets into a single character set.

3.8. Code Output

The final code is output in the form of FORTRAN BLOCK
DATA subprograms and appropriate accessing functions.

- 15 -

4. THE OBJECT CODE INTERPRETER

The object code interpreter, in conjunction with the
object code produced by the FSCAN compiler, forms a lexical
analyzer that will process a stream of input characters and
produce a stream of lexical units (tokens) as specified by
the FSCAN program that was compiled. The interpreter is
written 1in standard ANSI FORTRAN. In addition there is a
group of short (1 to 5 1line) routines that are machine
dependent (see Appendix B).

4.1. Input Interface

The stream of input characters 1is obtained by the
interpreter through repeated calls to the user-supplied
routine, GETBUF. The subroutine, GETBUF, has five output
parameters: four formal parameters and one array in a
labeled common block:

SUBROUTINE GETBUF (IBEG, IEND, EOLFLG, EOFFLG)

COMMON /user-defined-common-block/...,BUFFER(i),...

BUFFER 1is a user-defined array containing the
characters to be sent to the scanner, with the characters
stored one per array element.

IBEG and IEND are integer variables pointing
respectively to the first and last characters in BUFFER to
be sent. EOLFLG is a logical variable that is true iff an
EOL character is to be appended to the stream of characters
being returned in BUFFER. This EOL character is referenced
in an FSCAN program by the terminal 'EOL' or "EOL". EOFFLG
is a logical variable that is true iff there are no more
characters to be sent. When EOFFLG is true, the values in
BUFFER, IBEG, 1END, and EOLFLG are ignored.

Note: The user defined common block containing BUFFER must
be added to the routine EOIERR in the "Scanner Table Driver"
module. The array containing the characters must be named
BUFFER.

- 16 -

4.2. Output Interface

The interpreter must be initjialized by a call to the
subroutine INISCN. Following this initialization, the
stream of tokens is obtained by making successive calls to
the subroutine, SCANNR. SCANNR has four output parameters,
all appearing in the labeled common block, /TOKENC/:

SUBROUTINE SCANNR
COMMON/TOKENC/TKNTYP, KTFLAG, ITKNCH, TKNCHR(30)

TKNTYP is an integer variable indicating the type of
the token, KTFLAG is a logical variable that is true for a
kept-token and false for deleted-token, ITKNCH is an integer
variable indicating the number of kept-characters in the
token, TKNCHR is an array containing the kept-characters
(one character per array element).

4.3. Errors Reported by the Interpreter

>

'é'l' Recoverable Errors

The following recoverable errors are reported by the
lexical analyzer by generating a call of the form:

CALL SCNERR (i)

where i is an integer 1in the range, (1..10), indicating
which error occurred.

(1) Token is too long, i.e., the number of characters
marked as kept 1is larger than the size of the array,
TKNCHR. The default size of TKNCHR is 30. If longer
tokens are desired the interpreter would have to be
modified by increasing the size of TKNCHR and <changing
the initialization of the variable MTKNCH to be the new
size.

Recovery: The token is truncated on the right.

{2) Token contains erroneous characters. An erroneous
character is one that is not an element of the set of
expected characters of the state of the interpreter at
the time the character was encountered. An erroneous
character is processed by the interpreter by skipping
over the erroneous character without changing the state
of the interpreter.

Recovery: Erroneous characters are marked as deleted.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

- 17 -

Token to be screened contains erroneous characters
Recovery: Erroneous characters are marked as deleted.

Screening terminated with characters remaining in token
to be screened.

Recovery: The characters remaining in the token are
ignored.

Erroneous characters occurred in token being screened,
and screening terminated at the end of the token while
skipping over erroneous characters.

Recovery: None necessary.

End of input stream occurred prematurely.

Recovery: An EOFTOK token is generated.

Erroneous characters occurred in input stream and end
of input stream occurred while skipping over erroneous
characters.

Recovery: An EOFTOK token is generated.

End of token occurred prematurely while screening.

Recovery: Screening terminated and processing
continues.

Erroneous characters occurred in input stream, and the
end of the characters read in by the most recent call
to GETBUF reached while skipping over erroneous
characters.

Recovery: the lexical analyzer is reset to its initial
state before the next call to GETBUF.

The current call to GETBUF returns more characters than
there 1is room for in the internal character buffer of
the lexical analyzer.

Recovery: The lexical analyzer is reset to its initial
state and the previous contents of its internal buffer
is flushed. Note: It may be necessary to increase the
size of the internal buffer to prevent this error. See
fatal error six.

e =

o

- 18 -

4.3.2 Fatal Errors

The following fatal errors are reported by the lexical
analyzer by generating a call of the form: H

CALL FTLERR (i)
where i is an integer in the range, (1..6)

(1) The "call stack" overflowed.

To fix this error, the FSCAN program should be ¢
rewritten to generate less procedure-call nesting at
run-time. Alternatively, the size of the array, ;
CSTACK, in the labeled common block, /CSTAKC/, must be ;
increased, and MCSTAC must be initialized in the block

data subprogram, SCANBD, to a value corresponding to

the new size of CSTACK.

(2) The "keep" stack overflowed.

To fix this error, the FSCAN program should be
rewritten to generate fewer tokens within the operands
of an ELSE construct or the operand of a 2%,
Alternatively, the size of the array, KSTACK, in the
labeled common block, /KSTAKC/, must be increased, and
MKSTAC must be initialized in the block data
subprogram, SCANBD, to0 a value corresponding to the new
size of KSTACK. !

(3) 1Illegal action on call stack.
An internal error that should never occur.

(4) Error in backup.
An internal error that should never occur.

(5) Empty input buffer returned by GETBUF
To fix this error, the user should ensure that every
call to GETBUF returns either EOFFLG = TRUE or a non-
empty buffer (i.e., IBEG < IEND).

(6) Too many characters returned from GETBUF

To fix this error the user should ensure that every
call to GETBUF returns no more than CBFS1Z characters
(i.e., IEND-IBEG < CBFSIZ) where CBFSIZ is a variable
in the common block, /CHRBFC/, and is initialized in
the subprogram, INISCN. Alternatively, the size of the

array, BUFFER, in the common block, /CHRBFC/, must be
increased, and MCHAR must be initialized in the bloc

-~ 19 -

data subprogram, SCANBD,

to a value corresponding to
the new size of BUFFER.

Since CBFSIZ is initialized in

INISCN to be MCHAR-2, this will also increase the size
of CBFSIZ.
lihinam,

- 20 -

5. FSCAN-SUBSET OBJECT CODE INTERPRETER

For many lexical analyzers, the full power of FSCAN is
unnecessary. For these analyzers, a smaller and more
efficient interpreter is available. This interpreter can be
used on the object code produced from FSCAN programs that
satisfy the following restrictions:

- The operators, ELSE, **, and ?* may not be used.
- Nonterminal and evaluate token-actions may not be used.
- All characters of a token must occur in the characters

returned from a single call to GETBUF.

5.1. 1Input Interface

The stream of input characters is obtained by the
interpreter through repeated calls to the user-supplied
routine, GETBUF. The subroutine, GETBUF, has one input
formal parameter, NMCHRS, and three output formal
parameters, BUFFER, EOLFLG, and EOFFLG:

SUBROUTINE GETBUF (NMCHRS, BUFFER, EOLFLG, EOFFLG)
DIMENSION BUFFER(NMCHRS)

NMCHRS is an integer variable specifying the number of
characters that should be placed in BUFFER, one character
per array element.

EOLFLG is a logical variable that is true iff an EOL
character 1is to be appended to the stream of characters
being returned in BUFFER. This EOL character is referenced
in an FSCAN program by the terminal 'EOL' or "EOL". EOFFLG
is a logical variable that is set to be true iff there are
no more characters to be sent. When EOFFLG is true, the
values of BUFFER and EOLFLG are ignored.

5.2. Output Interface

See standard interpreter.

5.3. Errors Reported by the Interpreter

5.3.1. Recoverable Errors

(1) Recoverable error 1 from standard interpreter.
(2) Recoverable error 2 from standard interpreter.
(3) Recoverable error 6 from standard interpreter.

(4) Token extends past end of the characters read in by the
last call to GETBUF.

Recovery: The lexical analyzer is reset to its initial
state and the current contents of BUFFER is flushed.

§.§.2. Fatal Errors

(1) Fatal error 1 from standard interpreter.

(2) Fatal error 2 from standard interpreter.

{3) Illegal action for the FSCAN-subset interpreter.
To fix this error, the FSCAN program should be
rewritten to satisfy the requirements of the FSCAN-

subset. Alternatively the regular interpreter must be
used instead of the subset interpreter.

{11

2]

£33

[4]

References
ANSI : FORTRAN. X3.9-1966, American National Standards
Institute 1966.

ANSI : FORTRAN 77. X3.9-1978, American National
Standards Institute 1978.

Osterweil, L. J.; and Fosdick, L. D. "DAVE - a
validation, error detection and documentation system
for FORTRAN programs, " Software Practice and

Experience.

DeRemer, F., SVG Memos #69-72, #76-77, #80, #83-84.
Dept. of Computer Science, University of Colorado at
Boulder, Boulder, Colorado, 1977.

- 23 -

Appendix A:
Machine Dependencies in the FSCAN compiler

1. Machine Dependent Constants

1.1. NCHARS

NCHARS in /NCHARSC/ is the number of distinct
characters in the character set of the machine.

.
(o

.
(8]

NBTPWD

! NBTPWD in /NBTPWC/ is the number of bits in a machine
word.

2. Machine Dependent Primitives

2.1. INTEGER FUNCTION INTGER (CHAR)

Input:
CHAR contains a character stored in 1H (or Al) format.

Result:
An integer between 1 and NCHARS with a unique value for
each distinct character.

2.2. INTEGER FUNCTION CHRCTR (INT)

This is the inverse of the INTGER function.

2.3. INTEGER FUNCTION DIG (CHAR)

Input:
same as INTGER

Result:
If the character is a digit the result is the integer
value of the digit (0-9); otherwise the result is ~-1.

2.4. INTEGER FUNCTION IAND (I1,I2)
INTEGER FUNCTION IOR (I1,I12)
INTEGER FUNCTION INOT (I1)

These functions return the result of the bitwise
logical operation of AND, OR and NOT, respectively.

2.5. LOGICAL FUNCTION EOFILE (ICHANL)

Input:
ICHANL is a logical channel number.

Result:)))
True iff channel ICHANL is at logical end of file.

3 | o 4

- 24 -

2.6. INTEGER FUNCTION HOLCHR (HCONST, ICHAR)

Input:
HCONST 1is a Hollerith constant of the form
nHc_lc_2...c_n where n is an unsigned positive integer
and c_i is a character, i=l..n. ICHAR is an integer
between 1 and n.

Result:
HOLCHR(HCONST,i) will return c_i, stored in Al or 1H

format.

2.7. INTEGER FUNCTION LRS (IVAL, ICOUNT)
INTEGER FUNCTION LLS (IVAL, ICOUNT)

LRS and LLS return the logical shift (end-off, =zero-
fill), right and 1left respectively, of ICOUNT binary
positions of the value, IVAL.

- 25 -

Appendix B:
S Machine Dependencies in the FSCAN object code interpreter.

The following machine dependent primitives are
required:

1. INTEGER FUNCTION INTGER (CHAR)
2. INTEGER FUNCTION CHRCTR (INT)
- 3. INTEGER FUNCTION DIG (CHAR)

4. INTEGER FUNCTION LRS (IVAL, ICOUNT)

5. INTEGER FUNCTION LLS (IVAL, ICOUNT)

These routines are described in Appendix A.

P ot moreegeraa

- 26 -

Appendix C :
Syntax of FSCAN programs

PROGRAM -> 'TOKENS' TERMINAL+ SCANNER '.' ;

SCANNER
-> 'SCANNER' GOAL_SYMBOL ':'
(RULE ';')+ 'END' GOAL_SYMBOL ;
RULE
-> NONTERMINAL ('->' REG_EXPRN ('~>' ACTION)?)+
—-> SCANNER ;

REG_EXPRN -> REG_TERM list '/' ;
REG_TERM -> REG_PHRASE+ ;
REG_PHRASE -> REG_FACTOR ('LIST' REG_FACTOR)? ;

REG_FACTOR
=> REG_PRIMARY ('*'/'+'/'2')?
-> 'NOT' REG_PRIMARY ;

REG_PRIMARY
-> '(' REG_EXPRN? ')°
-> NONTERMINAL list 'ELSE’
-> NONTERMINAL (‘'***' / '?2%') EXPONENT
-> TERMINAL

ACTION
-> TERMINAL SCREENER?
-> SCREENER ;

SCREENER
-> '(' NONTERMINAL ')'
-> |(| LD L

EXPONENT -> NONTERMINAL / '<INTEGER>' ;

GOAL_SYMBOL -> '<NAME>'

~e

NONTERMINAL -> '<NAME>'

-e

SCREENER ~-> '<NAME>'
TERMINAL -> ‘'<KEPT_STRING>' / '<DELETED STRING>' ;

Note: "A?" is equivalent to "A/()"

"A list B" is equivalent to A(B A)*

- 27 -

Appendix D :
Examples of FSCAN Programs

Following are _three complete FSCAN programs. They
describe 1lexical analyzers for the FSCAN language, PASCAL,
and FORTRAN-77 respectively.

- 28 -

TOKENS

"IDNTFR" "INTEGR" “KSTRNG" "“DSTRNG" "DELMTR"” "OPRATR"
SCANNER FSCAN :
THIS IS THE FSCAN PROGRAM USED TO CREATE THE LEXICAL ANALYZER FOR
THE FSCAN COMPILER. SCREENING OF KEYWORDS FROM IDENTIFIERS
AND LEGAL OPERATORS FROM OPERATORS IS DONE AUTOMATICALLY BY THE
SYMBOL TABLE MECHANISM AND IS THEREFORE NOT PERFORMED BY THE
LEXICAL ANALYZER.

H 3 W

FSCAN -> (SPACES FSCAN1l)* SPACES ;
SPACES -> (' * / 'EOL')*

SCANNER FSCAN1 :
FSCAN1 -> NAME/INTEGER/KSTRING/DSTRING/KKEYWORD
/DKEYWORD/DELIMITER/OPERATOR/COMMENT ;

END FSCAN1 ;
NAME -> KACHAR (KACHAR / KDIGIT)* => "IDNTFR"
INTEGER -> KDIGIT+ => "INTEGR"
KSTRING -> DQ (NOTDQSH / SHARP KC)* DQ => “KSTRNG"
DSTRING -> SQ (NOTSQSH / SHARP KC)* SQ => "DSTRNG"

KKEYWORD ~> '<' *'<' KKEYCHAR* '>°' '>' .
DKEYWORD -> '<' DKEYCHAR* '>' ;

KKEYCHAR -> NOT(KEYDLM/“##") / SHARP KEYDLM => "KSTRNG"
DKEYCHAR -> NOT(KEYDLM/"##") / SHARP KEYDLM => "DSTRNG"
KEYDLM - WM / Il>ll .
DELIMITER - n:u / u:n / u(n / u)u / u.u => "DELMTR“?
OPERATOR -> (u_u / Wy n / u/u / non

/ n?u / Hegen / n+u)+ =5 "OPRATR"

COMMENT -> SHARP (NOT 'EOL')* 'EOL' ;

KACHAR -> uAn/n n/ 1] u/uDu/uEu "F"/"G' /nHu/uIn/an/nKu/uLn/uMn/
"N"/ / Ipll/ll /"R"/ S / 'T' /nUu/nVn/nwu/uxu/nYu/uzn .

KDIGIT -> uou/ u/ 2||/u3n/ll4u/nsn/ '6"/' -7n/u8n/u9u :

DQ -> '"' ; SQ ~> '#'' ; SHARP ~> '##' ;
NOTDQSH -> NOT("##"/"#"") : NOTSQSH -> NOT("##"/"'") ;

KC -> NOT("") ;

END FSCAN.

-.

~ ~e

~. wo

-

TOKENS

"IDENT" "NUMBER" "CCONST"

'AND' 'ARRAY' 'BEGIN' 'CASE' 'CONST' 'DIV' 'DO’' °‘DOWNTO' ‘ELSE’
3 'END' ‘FILE' 'FOR' 'FUNCT' 'GOTO' 'IF' 'IN' 'LABEL' 'MOD' 'NIL’
] 'NOT' ‘'OF' 'PACKED' 'PROC' ‘PROG' 'RECORD' 'REPEAT' 'SET' °'THEN'
‘TYPE' ‘'UNTIL' °'VAR' 'WHILE' 'WITH' [
‘LPARN' 'RPARN' 'LBRKT' ‘'RBRKT'
*ASGN’ 'COLON' 'SCOLON' ‘'PD' 'COMMA' ‘'RANGE'
'PLUS' °'MINUS' 'DIVD' ‘MULT' 'LT' 'GT' 'LE' 'GE' 'EQ' 'NE' 'PNTR'

» SCANNER PASCAL :
j PASCAL -> (SPACES PASCAL1)* SPACES ;
f SPACES -> (* */'EOL')* ;

SCANNER PASCALL :
PASCAL]l -> NAME/NUMBER/SCONST/DELIMITER/OPERATOR/COMMENT ;

.»E END PASCAL1 ;

-~ 30 -

NAME -> ALPHA (ALPHA/DIGIT)* => "IDENT" (KEYWORD) ;
SCANNER KEYWORD :
KEYWORD ~-> <AND> => 'AND’
-3 <ARRAY> => 'ARRAY'
-> <BEGIN> => 'BEGIN'
-> <CASE> => 'CASE'
-> <CONST> => 'CONST'
-> <DIV> => 'DIV'
. -> <DO> => 'DO'
v -> <DOWNTO> => 'DOWNTO'
-> <ELSE> => 'ELSE'
-> <END> => 'END'’
-> <FILE> => 'FILE'
-> <FOR> => 'FOR'
-> <FUNCTION> => 'FUNCT'
-> <GOTO> => 'GOTO'
=> <IF> => 'IF'
-> <IN> => "IN’
-> <LABEL> => 'LABEL'
-> <MOD> => ‘'MOD'
-> <NIL> => °'NIL'
-> <NOT> => 'NOT'
-> <OF> => 'OF'
-> <PACKED> => 'PACKED'
-> <PROCEDURE> => 'PROC'
-> <PROGRAM> => ‘'PROG'
-> <RECORD> = 'RECORD’
-> <REPEAT> => 'REPEAT'
-> <SET> => 'SET'
-> <THEN> => 'THEN'
-> <TYPE> => 'TYPE'
-> <UNTIL> => 'UNTIL'
-> <VAR> => 'VAR'
-> <WHILE> => 'WHILE'
~> <WITH> => 'WITH' ;

END KEYWORD:

NUMBER =-> DIGIT+ DECPART?*1
(IIEII (ll+ll/|l_ll)? DIGIT+)? => "NUMBER"

SCANNER DECPART :
DECPART ~-> "." DIGIT+ ; END DECPART ;
DIGIT -> l|ou/ulu/||2||/||3n/n4n/u5n/u6ll/u7u/n8n/u9u :

SCONST -> DQT (NOT(KQT/"EOL") / (DQT KQT))* DQT => "SCONST"
DQT -> l#ll : KOT -»> Han :

DELIMITER -> (! => 'LPARN'
-> ") => 'RPARN'
-> '[! => 'LBRKT'
-> ' => 'RBRKT'
- |:| L =5 'ASGN'
-> 't => 'COLON'
-> ! => 'SCOLON'
-> |.| => IPDI
-> ' => 'COMMA'
_> l.l I.l => IRANGEl 7
OPERATOR -> '+' => 'PLUS'
-> ' => 'MINUS'
-> l/l =5 'DIVD'
_> togt ___> lMULTl
-y '¢! = LT
-> ' = 'GT"
-> '¢' ' = ‘LE!
-> l>l I=l => IGEI
_> l=| - IEQI
_> l<l l>l => INEI
-> ' => 'PNTR' ;
COMMENT -> '(' '*' CMNTCHRS '*' ')' ;

CMNTCHRS ~> (NOT('*') / ('*' NOTRP**0Q))* ;
SCANNER NOTRP :
NOTRP -> NOT(')') ; END NOTRP ;

END PASCAL.

~e

~e

- 32 -

TOKENS
"LBLFLD" "NAME" "DCONST" "LCONST" "RCONST" "DPCNST" "FIELD"
'HCONST' 'EOS’
'KASSIG' 'KBACKS' 'KBLOCK' 'KCALL' 'KCLOSE' 'KCOMMO' 'KCONTI'
'KDATA' 'KDO' 'KDIMEN' 'KELSE' 'KEND' 'KENDFI' ‘'KENTRY' 'KEQUIV'
'KEXTER' 'KFUNCT' 'KFORMA' 'KGO' 'KIF' 'KIMPLI' 'KINQUI' ‘KINTRI'
'KOPEN' 'KPARAM' 'KPAUSE' 'KPRINT' 'KPROGR' 'KREAD' 'KRETUR'
'KREWIN' 'KSAVE' 'KSTOP' 'KSUBRO' 'KTHEN' 'KTO' 'KWRITE'
'KINTEG' 'KREAL' 'KDOUBL' 'KPRECI' 'KCOMPL' 'KLOGIC' ‘'KCHARA'
‘COMMA' 'EQUALS' ‘'COLON' 'LPAREN' 'RPAREN'
'LE' 'LT' 'EQ' 'NE' 'GE' 'GT' 'AND' °'OR' 'EQV' 'NEQV' 'NOT'
'ASTRSK' 'DBASTR' 'PLUS' 'MINUS' ‘'SLASH' 'CONCAT'

SCANNER FORTRAN77 :
IT IS ASSUMED THAT GETBUF SKIPS OVER COMMENT LINES

FORTRAN77 =-> ULSTMT* ;
ULSTMT -> BSTMT CSTMT?*19 "EOL" => (FORTRANSTATEMENT)

BSTMT -> KC**72 DC* ;
SCANNER CSTMT :

CSTMT -> 'EOL' SBLANK**5 NOT(' '/'0O') BSTMT ;
SCANNER SBLANK :
SBLANK -> ' ' ; END SBLANK ; END CSTMT :
SCANNER DC :
DC -> NOT('EOL') : END DC :
SCANNER KC :
KC -> NOT("EOL") :; END KC ;

.
’

- 33 -

FORTRANSTMT -> LABELF BLANKCF (' '*)
(STMT ELSE ASGN ELSE STMT) TEXT EOS ;

STMT IS TRIED FIRST FOR EFFICIENCY, SINCE IN GENERAL STMT WILL FAIL
AFTER A FEW CHARACTERS ON ASSIGNMENT STATEMENTS, WHILE ASGN WILL

USUALLY HAVE TO SCAN AN ENTIRE KEYWORD STATEMENT BEFORE FAILING.

IF ASGN THEN FAILS, STMT IS INVOKED AS IT PROVIDES SUPERIOR ERROR

RECOVERY.

LABELF -> KC**5 => (SCANLBL) ;

SCANNER SCANLBL :
SCANLBL ~> (' '*) LBLFLD? ;
LBLFLD -> DIGIT+ => "LBLFLD"
END SCANLBL

BLANKCF => (' '/'0"')
-> NOT (' '/'0') => 'EOS' ; # EOS USED AS 'ERROR-TOKEN'

EOS -> 'EoL' => 'EOS' ;

STMT MATCHES ALL FORTRAN STATEMENTS WITH KEYWORDS
I.E. ALL STATEMENTS EXCEPT ASSIGNMENT AND STATEMENT FUNCTION DEF'S.
SCANNER STMT:
STMT -> BACKSPACE/BLOCK DATA/CONTINUE/DIMENSION/ENDFILE
/EQUIVALENCE/EXTERNAL/FUNCTION/INQUIRE/INTRINSIC
/ PARAMETER/ PROGRAM/SUBROUT INE
-> (FELSE / FEND IF?) EOLCHK
-> (CALL/CLOSE/COMMON/DATA/ENTRY/GO TO/OPEN/PAUSE/PRINT
/READ/RETURN/REWIND/SAVE/STOP/WRITE/TYPE(FCN ELSE NULL))
ICONST? NAME? PARENS? PARENS? EQTRAP
-> ASSIGN LABEL TO
-> DO LABEL COMMA? NAME EQUALS EXPR COMMA
-> FELSE IF PARENS THEN
~-> FORMAT FORMATSPEC EOLCHK .
-> IF PARENS (SCTHEN ELSE STMT ELSE NULL) PARENS? EQTRAP
-> IMPLICIT ((TYPE PARENS) LIST COMMA) ;

EOLCHK ENSURES THAT THE NEXT CHARACTER IS AN EOL,
WITHOUT PROCESSING THE EOL.
EOLCHK ~> SCEOL**Q ;
SCANNER SCEOL : SCEOL -> 'EOL' : END SCEOL :
EQTRAP CAUSES THE CURRENT ALTERNATIVE TO FAIL IF AN EQUALS-SIGN IS
THE NEXT INPUT STREAM CHARACTER, SINCE '' MATCHES NO CHARACTERS.
EQTRAP -> ('=' '')? ;

TYPE -> INTEGER/REAL/DOUBLE PRECISION/COMPLEX/LOGICAL
/CHARACTER (ASTRSK LENSPEC)? :
SCANNER LENSPEC :
LENSPEC -> ICONST/PARENS ; END LENSPEC ;

LABEL -> DIGIT+ => "“DCONST"
END STMT;

-

SCANNER ASGN :
ASGN -> NAME PARENS? PARENS? EQUALS ; END ASGN ;

SCANNER NULL : NULL -> (); END NULL ;

SCANNER FCN:
FCN -~> FUNCTION ;
END FCN;

SCANNER SCTHEN :
SCTHEN -> THEN ; END SCTHEN ;

SCANNER PARENS:
PARENS -> LPAREN (NAMLITOP/SEPARATOR/PARENS)* RPAREN;
END PARENS;

SCANNER NAMLITOP:
NAMLITOP -> NAME/LITERAL/OPERATOR ;
END NAMLITOP :

SCANNER EXPR :
EXPR -> (NAMLITOP/PARENS)+ ; END EXPR ;

SCANNER TEXT:
TEXT -> (NAMLITOP/SEPARATOR/LPAREN/RPAREN)* ;
END TEXT;

ASSIGN
BACKSPACE
BLOCK
CALL
CHARACTER
CLOSE
COMMON
COMPLEX
CONTINUE
DATA
DIMENSION
DGO

DOUBLE
FELSE
FEND
ENDFILE
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GO

IF
IMPLICIT
INQUIRE
INTEGER
INTRINSIC
LOGICAL
PARAMETER
PRECISION
OPEN
PAUSE
PRINT
PROGRAM
READ

REAL
RETURN
REWIND
SAVE

STOP
SUBROUT INE
THEN

TO

WRITE

->
->
->
->
->
->
->
->
->

->
->
->
->
->
->
->
->
->
->
->
->

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

ERHnNnnunIYYYOYYNrHHHHHQENEEEEHEHDOODODODOOOOOOWW >
WODMCEpEHEERIODIPOIPOZZZITNMOCOXOZZZNOORHPOOOIPE PO

2THAZIXOoOPCOOM

ZmHRlcdoona

HWO<ElIPpPro-CHmoyN-a30oN
-3 ZwowoHHCtioQzZzOZzOpH-E G

-

HE BMPI3TINDEORH

AXEHHW T

w
=P omy A0Q W

Z
wn

=

Mg H
-3z

HZOHQKHH

aAam

(] o 2

2m=

L"

hmP220n0
HA 0o A
]
Q

m
]

vV V V V V V VV YV V V.Y

c b ™
-

TINE

=3
LI L T O O | O O | (O (O ({1 | 1 | (O (T O | O T

VvV VVV V VV V VVVVVVVVVVVVVV VVVVVVVVVYV

'KASSIG'
'KBACKS'
'KBLOCK'
‘KCALL'

'KCHARA'
'KCLOSE'
'KCOMMO'
*KCOMPL'
*KCONTI'
'KDATA'

'KDIMEN'
'KDO' ;

'KDOUBL'
'KELSE'

'KEND' ;
‘'KENDF1I'
'KENTRY'
‘*KEQUIV'
'KEXTER'
'KFORMA'
'KFUNCT'
'KGO' ;

'KIF'

‘KIMPLI'
‘KINQUI'
'KINTEG'
'KINTRI'
'KLOGIC'
‘KPARAM'
'KPRECI'
'KOPEN'

'{>AUSE’
'KPRINT'
'KPROGR'
'KREAD'

'KREAL'

'KRETUR'
‘KREWIN'
‘'KSAVE'

‘*KsTop'

'KSUBRO'
'KTHEN'

‘KTO'

'KWRITE'

-

~e

~

~e

~s ~»

-~ “e

~

e ~e wo

~e e w8 o we

~e

~e

~s wg nE g ne we

~e

ce ~o wo

~e e ~e e o ~e ~o o

~e

goow;:v

Q&Y™
= A

=~

=

QWOO'UOOZZZt"l"XHE
A R R = ~ =

x

'<§><2<<C:C‘.0-]b-3mm

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

|
v

IIAII
IBI
lcl
IDI
IIDII
IEI
IIEII
IFI
IIF"
lGl
IIGII
IHI
III
IKI
ILl
IILII
IMl
INI
IINII
I0|
Iloll
lPl
IQI
IIQ"
lRl
"R"
lsl
Ilsll
ITI
llTll
lul
"ull
lv|
llvll
lwl
le
lell

<

P e W e T o T X e Tt Ve R W W R X R E e L R s R e e Rt W S W e P B i e W W N N)

- m e e m ®m e ®m e om w e ® @ & @ owm oe e moEm e owm m % ® & ® @ @w % ® ® & ® & 2 =

l*)
l*)
I*)
1*)
l*)
I*)
|*)
|*)
l*)
l*)
l*)
|*)
|*)
I*)
l*)
l*)
l*)
I*)
l*)
l*)
|*)
l*)
|*)
l*)

*) ;

l*)
I*)
I*)
I*)
l*)
l*)
!*)
l*)
I*)
l*)
l*)
I*)
I*)
l*)

- 36 -

- 37 -

NAME LETTER (LETTER/DIGIT) * => "NAME" ;

LETTER - (nAn/uBu/uCu/an/||En/nFu/nGu/an/nIu
/"J"/"K"/"L"/"M"/"N"/“O"/"P"/"Q"/"R"
/uSn/uTu/nUn/nvu/uwn/nxn/uYn/nzn) ([T *) :

DIGIT -3 (uon/ulu/nzn/|l3u/||4u/u5u/u6u/u7u/u8u/u9n) (. |*) ;

TO PROCESS FORTRAN CORRECTLY, SCANICONST MUST PRECEDE SCANACONST,
BUT IN CASE BOTH FAIL, SCANICONST PROVIDES SUPERIOR ERROR
#+ RECOVERY, THUS THE FOLLOWING CONSTRUCT IS USED.
LITERAL -> (SCANICONST ELSE SCANACONST ELSE SCANICONST)
-> DECPTACONST/LCONST/CHRCNST ;
SCANNER SCANACONST :
SCANACONST -> ACONST ; END SCANACONST ;
SCANNER SCANICONST :
SCANICONST -> ICONST (LCONST/OPERATOR) ?

-> DIGIT+ EEXP SIGN? DIGIT+ => "“RCONST"
~-> DIGIT+ DEXP SIGN? DIGIT+ => “DPCNST" ;
END SCANICONST ;
ICONST ~-> DIGIT+ => "DCONST" ;
ACONST -> DIGIT+ POINT DIGIT* (EEXP SIGN? DIGIT+)? => "RCONST"
~> DIGIT+ POINT DIGIT* DEXP SIGN? DIGIT+ => "“DPCNST" ;
DECPTACONST -> POINT DIGIT+ (EEXP SIGN? DIGIT+)? => “RCONST"
—-> POINT DIGIT+ DEXP SIGN? DIGIT+ => "“DPCNST" ;
EEXP —-> uEu (l l*) s
DEXP _> I|Dll (] i*) :
POINT -> u.u (l |*) :
SIGN -> (u+u/u_n) (l l*) :
HCONST -> LENGTH 'H' HCONSTVAL ;
HCONSTVAL =-> DC**LENGTH (' '*) => 'HCONST' ;
CHRCNST -> APOST
(NOT('EOL' /APOST) / (APOST APOST))+
APOST (' '*) => 'HCONST' ;
APOST -> "'
LENGTH -> DIGIT+ => (=) ;

LCONST

- 38 -

-> DOT TK RK UK EK DOT =>

-> DOT FK AK LK SK EK DOT =>

SEPARATOR -> COMMA/EQUALS/COLON :

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

OPERATOR

PLUS -> !
MINUS =-> '
ASTRSK =-> '
DBASTRSK
SLASH =->
DBSLASH

LPAREN =-> '
RPAREN =-> '
EQUALS =-> '
coMMA -> !
COLON => '

-> " [1]

DOT

EK
TK
QK
EK
EK
TK
NK
RK
QK
EK
OK

DOT
DOT
DOT
DOT
DOT
DOT
DOT
DOT
DOT
DOT NK
DOT NK
ASTRSK
DBASTRSK
PLUS
MINUS
SLASH
DBSLASH ;

LK
LK
EK
NK
GK
GK
AK
OK
EK

I*)
I*)
(l

I*)
(l

l*)
l*)
I*)
l*)
l*)

((]

'*) .

1

')

l*)

DOT
DOT
DOT
DOT
DoT
DOT

DK DOT
DoT
VK DOT
QK VK DOT
TK DOT

Lt

|/|

(l
(C

o*)

|*)

"LCONST"
"LCONST"

‘LE®
‘LT’
IEQI
'‘NE'
'‘GE"
'‘GT'!
‘AND'
'OR"
'EQV'
'NEQV'
'NOT'

'PLUS' ;
'MINUS'
'ASTRSK'
'DBASTR'
'SLASH'
'CONCAT'
'LPAREN'
'RPAREN'
'EQUALS'
'COMMA'
'COLON'

.
.

~e

~e =p

-
’

s ~o

~e w0 we we

SCANNER FORMATSPEC :
FORMATSPEC -> LPAREN
(FIELD/SLASH* /COLON*) LIST (COMMA/SLASH* /COLON¥)
RPAREN ;

SCANNER FIELD:
FIELD -> HCONST/CHRCNST/NHDESC/ (ICONST? FORMATSPEC) ;

END FIELD ;
COMMA -> ‘,' (' '*) ;

NHDESC -> DIGIT* A DIGIT* =>

-> DIGIT* L DIGIT+ =>

-> DIGIT* I DIGIT+ (POINT DIGIT+)? =>

->
->
->
->
->
->
->
SCALE ~->

FDEG ->
->

SCALE? FDEG
SCALE? FDEG

T LR? DIGIT+ =>
DIGIT+ X =
S PS? =>
SCALE

B NZ =

SIGN? DIGIT+ P =
DIGIT* FD DIGIT+ POINT DIGIT+ =

"FIELD"
" FI ELD "
"FIELD"

"FIELD"
[1] FIELDII
"FIELD"

"FIELD"
"FIELD"
"FIELD"

DIGIT* EG DIGIT+ POINT DIGIT+ (EK DIGIT+)?

=>

SIGN -> (n+u/n_u) (I n*) :

FD -> (nFu/nDu)
EG -> (uEn/uGu)
R

LR -3 ("L"/" u)

A - "AM
L - IILlI
I - "III
T -d "T”
x -> llxll
s - IISII

PS -> (uPu/usn

p _> llP"
B -) llBll

)
NZ - (llNll/llzll)

(l l*)
(* %)
(* %)

- =ns wp “e

~~ —~

*
—~—
~s ~o

(’

l*)

-8

o~

e

(l)
(l)

*
*

S
- we

~

l*)

~e

()

"%
(l (Y

N Nt
-~y o

o~

n*)

~.

END FORMATSPEC

END FORTRAN77.

"FIELD"

~e e

~e

- 40 -

Appendix E:
Interpreter Size and Speed

All size and speed measurements were done on a VAX
11/780 wusing the £77 compiler. All numbers are given in
decimal,

1l. size
1.1. Interpreter Size
The FSCAN interpreter consists of :
8.5k bytes code
1.5k bytes data

1.2. Table Sizes
The object code or tables for the programs listed in
Appendix D require :

l'3°l' Fscan
1.5k bytes

1.2.3. Fortran7l
15k bytes + 9k bytes increased interpreter data space

2. Speed
Following are timing measurements on the FORTRAN lexical
analyzer produced from the specification in Appendix D.

(1) Standard interpreter
16 lines/second

(2) Interpreter (1) with FORTRAN READ statement replaced
with a call to a 'read-line’' routine written in C :
22 lines/second

(3) Interpreter (2) with most primitive function calls
macro expanded in line :
52 lines/second

(4) Interpreter (3) with 1logical 1left and right shift
primitives done in line :
80 lines/second (est.)

AD=AL103 635

uncussmen
2

COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE F/6 9/2

SCAN-ll REPORT AND USER'S MANUAL.{U)
JUN 81 & M CLEMM
CU=CS=202~81 ARO=15074,13=M

DAAG29=78=0-0046
NL

P +
- e - -

¥
a""

viLles ‘ 1.
:: . .':

. L} r 2

; \ :

X \ |

¢ 3 ’

t ‘ ('

e !

.

s34

o

400 15074 13-m\

FSCAN-81 Report and User's Manual Cu-Cs-202~-81
ERRATA :

page 29, line 2, substitute :

"IDENT" "NUMBER" "“SCONST"

S -H/03 635

page 32, last line, add :

SCANNER FORTRANSTATEMENT : ,
FORTRANSTATEMENT -> FORTRANSTMT ; END FORTRANSTATEMENT ;

